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Abstract

In these notes, we discuss the some aspects of the theory of compact-
ified Jacobians. The focus is on explaining the basic results in a modest
level of generality and giving some concrete examples. These notes are
based on a talk that the author gave at a student seminar at Harvard in
Fall 2007.

Contents

1 Motivation 1

2 Basic Definitions and Theorems 3
2.1 The Picard Functor . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Some Basic Facts about Torsion-free Sheaves . . . . . . . . . . . 5
2.3 The Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 The Abel Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Examples 9
3.1 Smooth Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Genus 1 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Genus 2 Curves with a Node . . . . . . . . . . . . . . . . . . . . 10
3.4 Genus 2 Curves with a Cusp . . . . . . . . . . . . . . . . . . . . 11
3.5 The General Picture . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Motivation

A fundamental problem in algebraic geometry is “how to take limits of line bun-
dles?” A simple, but illustrative example can be constructed from the geometry
of plane cubics. Let X0 be a plane cubic curve in P2 with a node at the origin
p0 = [0, 0, 1] and X∞ be a general cubic curve that passes through p0. Consider
the pencil {Xt} spanned by these curves. For t 6= 0, we can define a line bundle
Lt by setting Lt = OXt

(−p0) (the ideal sheaf of p0). It is natural to ask “what
is the limit”

lim
t→0

Lt =?
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This limit wants to be the ideal sheaf of p0 in X0, but this sheaf is not a line
bundle.

One can restate this question more formally. Let X → P1
t be the pencil in

question. There is a scheme PicX/P1 → P1, called the relative Picard scheme
that parametrizes families of line bundles on the given pencil of curves. Let ∆ =
Spec(k[[t]]) be a formal disc around the origin of P1 and ∆∗ = Spec(Frac(k[[t]]))
the formal punctured disc. The line bundles Lt, t 6= 0, fit together to form
a family of line bundles and hence induce a morphism ∆∗ → PicX/P1 . This
morphism fits into the diagram below:

∆∗ PicX/P1

∆ P1
?

-

?
-

p p p p p p
p p p p p�

Because the ideal sheaf Ip0 of X0 is not a line bundle, it follows that there
is no extension of ∆∗ → PicX/P1 to a morphism ∆ → PicX/P1 . This shows
that PicX/P1 does not satisfy the valuative criteria of properness. The question
“how to take limits of line bundles?” can be restated as “how to compactify the
relative Picard scheme?”

There is no canonical answer to this question. A wide range of different
compactifications have been constructed. Each compactification has its own
advantages and disadvantages. The “correct” compactification to consider de-
pends on the context. In these notes, we will discuss a compactification of the
Picard scheme using torsion-free sheaves. The idea behind this construction is
attributed to Alan Mayer and David Mumford.

Inspired by some work of Igusa, they proposed a construction of a com-
pactification of the Jacobian of a curve using rank 1, torsion-free sheaves at a
conference in 1964. In his thesis [5], D’Souza gave a construction of this com-
pactification for the relative Jacobian of a family of curves over a Henselian
(Noetherian) local ring with separably closed residue field. His proof uses meth-
ods from geometric invariant theory. In [2], Allen Altman and Steven Kleiman
constructed the relative compactified Picard scheme in greater generality. Their
proof was modeled on Grothendieck’s construction of the relative Picard scheme
and will be discussed later in these notes. Much of the material in these notes
is derived from Altman and Kleiman’s article [2].

The Altman-D’Souza-Kleiman theory has the following features:

Advantages:

• The compactification is a fine moduli space for a natural class of algebro-
geometric objects.

• The Jacobian group variety acts on the compactification.
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• There is an Abel map generalizing the classical Abel map from a smooth
curve to its Jacobian.

Disadvantages:

• The theory only works for integral curves.

• For integral curves with sufficiently bad singularities, the compactification
is “too big” (i.e. there are boundary components whose dimension is larger
than the dimension of the Picard scheme).

In the example with plane cubics, the limit of the line bundles Lt in the
Altman-D’Souza-Kleiman compactification is the ideal sheaf Ip0 of the point p0

on the curve X0. In general, the Picard scheme is compactified by allowing line
bundles to degenerate to rank 1, torsion-free sheaves.

2 Basic Definitions and Theorems

2.1 The Picard Functor

The theory of the compactified Jacobian works for a fairly arbitrary family of
integral curves. For the remainder of this section, let f : X → S be locally
projective, finitely presented, and flat with 1-dimensional integral geometric
fibers. We shall occasionally use the term “family of integral curves” as a
shorthand to refer to such morphism.

There is some disagreement in the literature on what it means for a morphism
to be locally projective. In these notes, we follow the conventions of [8]. The
relevant sections are 5.3 and 5.5.

If f : X → S is a morphism of schemes, then we say that f : X → S
is projective if X is isomorphic to a closed subscheme of P(E ) over S for
some quasi-coherent OS-module E that is of finite type. In general we say that
f : X → S is quasi-projective if f : X → S is of finite type and admits a
relatively amply line bundle. When S is quasi-compact and quasi-separated,
this is equivalent to saying that X is isomorphism to a locally closed subscheme
of P(E ) over S for some quasi-coherent OS-module E that is of finite type. The
condition of being quasi-projective is not local on the base S. We say that
f : X → S is locally quasi-projective (resp. locally projective) if there is
an open cover of S such the restriction of f is any element of the open cover is
quasi-projective (resp. projective).

For a family f : X → S of integral curves, the (arithmetic) genus of a
geometric fiber Xs̄ defines a locally constant function of the base S. We will
assume that the genus is in fact constant and equal to g. Furthermore, to
simplify various technical issues, let us suppose that we are also given a section
σ : S → X contained in the smooth locus of f . Let us now review the definition
of the relative Picard functor.
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The relative Picard functor, written PicX/S or PX/S , is defined to be the
functor from S-schemes to sets that is given by the rule:

PicX/S(T ) = {(L , i) : L is a line bundle on XT , i is an isom. σ∗(L ) ∼= OT }/ ∼=

Here ∼= indicates that we are taking pairs up to isomorphism. An isomorphism
from one pair (L , i) to another pair (M , j) is an isomorphism L → M that
respects the identifications i and j. We will occasionally be sloppy and refer
to an element of PicX/S(T ) as a line bundle or a sheaf even though strictly
speaking such an element is a line bundle with some additional data.

A given pair (L , i) has no non-trivial automorphisms, so that it follows
from descent for quasi-coherent sheaves that PicX/S is a sheaf (on, say, the
big étale site). This would not be true if we only considered line bundles up to
isomorphism. It is for this reason that we have made the simplifying assumption
that we are given a section σ that is contained in the smooth locus.

The degree of a line bundle is locally constant in flat families, so we can
obtain a component of PicX/S by considering families of fixed degree. The sub-
functor of PicX/S that parametrizes families of degree n line bundles is denoted
by Picn

X/S or Pn
X/S . The subfunctor Pic0

X/S is also known as the relative
Jacobian and we will also be written as JX/S . Because we have assumed that
f : X → S admits a section, the functors Picn

X/S are all isomorphic.
There are several different theorems about the representability of the Picard

functor. For our purposes, the following result more than suffices:

Theorem 1. Suppose that f : X → S is locally projective, finitely presented,
and flat with 1-dimensional integral geometric fibers. Then PicX/S → S is rep-
resentable by a S-scheme that is smooth of relative dimension g. Furthermore,
each subscheme Picn

X/S → S is locally quasi-projective over S.

Proof. This theorm is originally due to Grothendieck [9]. One recent exposition
of the proof is [10].

The proof of the existence of the compactified Picard scheme follows along
the same lines as this proof, so it is worth recalling the general flavor of the
argument. Let us suppose for simplicity that S is the spectrum of an alge-
braically closed field, so that we are dealing with a single curve. Furthermore,
let’s assume that X is in fact a smooth curve. To prove the representability of
PicX/S , one can show that it is enough to prove the representability of Picn

X/S

for some n. For any n, there is a natural map Symn(X) → Picn
X/S given by

{p1, . . . , pn} 7→ OX(p1 + . . .+ pn). For n sufficiently large, this map realizes the
symmetric power of X as a projective bundle over the functor Picn

X/S . Finally,
one shows that it is possible to take the quotient of the symmetric power of X
by the equivalence relation defined by identifying points lying in the same fiber
of Symn(X)→ PicX/S .

Example: In the example of the pencil of plane cubics f : X → S from the
introduction, the relative Jacobian JX/S is (non-canonically) isomorphic to the
smooth locus X0 → S of f : X → S. The general (geometric) fiber of this family
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is an elliptic curve. There are a finite number of special fibers (corresponding to
the nodal curves) for which the (geometric) fiber is a group variety isomorphic
to Gm.

We compactify PicX/S by enlarging the functor of points. In order to define
the compactified Picard functor, it is necessary to make some further definitions.

2.2 Some Basic Facts about Torsion-free Sheaves

Suppose for the moment that S is the spectrum of an algebraically closed field,
so that we are dealing with a single integral curve rather than a family of such
curves. To emphasize that we are working with a single curve, let us write s̄ for
S and Xs̄ for X. We say that a coherent sheaf on Xs̄ is rank 1, torsion-free
if it satisfies the following conditions:

1. The sheaf I satisfies Serre’s condition S1 (no associated prime is embed-
ded).

2. The sheaf I is generically isomorphic to OXs̄ .

Because we are dealing only with integral curves, condition 1 is equivalent to the
condition that no non-zero section of OXs̄ kills a non-zero section of I (i.e. I is
torsion-free in the “usual sense”). Condition 1 is useful as it is more geometric
and it generalizes more readily to the non-integral case. We should also remark
that if Xs̄ is regular, then every rank 1, torsion-free sheaf is a line bundle. This
is, for example, a consequence of the classification of finite modules over a dis-
crete valuation ring.

Examples: Basic examples of rank 1, torsion-free sheaves are:

• Any line bundle.

• Any non-zero ideal sheaf.

Some examples of sheaves that fail to be rank 1, torsion-free are:

• Any vector bundle of rank greater than 1. Such a sheaf is not generically
isomorphic to OXs̄

.

• Any sheaf that is supported on a proper subset of X. Such a sheaf is also
not generically isomorphic to OXs̄

.

• The direct sum of a line bundle and a skyscraper sheaf or, more generally,
any extension of a line bundle by a skyscraper sheaf. Such a sheaf has an
associated prime that is embedded.

Now suppose that S is again arbitrary. Let us define what is meant by
a family of torsion-free, rank 1 sheaves. Suppose that I is a locally finitely
presented OX -sheaf on X. We say that I is a S-relatively rank 1, torsion-
free sheaf or a family of rank 1, torsion-free sheaves parametrized by S if the
following two conditions are satisfied:
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1. I is S-flat.

2. The restriction of I to any geometric fiber I|Xs̄
is a torsion-free, rank 1

sheaf in the previously defined sense.

With these definitions out of the way, we now define the relative compact-
ified Picard scheme by enlarging the functor of points of PX/S . We define
relative compactified Picard functor, written P̄icX/S or P̄X/S , by the rule

P̄icX/S(T ) = {(I, i) : I is a rel. tor.-free, rnk 1 sheaf on XT , i : σ∗(I) ∼= OT }/ ∼=

Here ∼= again means that we are taking pairs (L , i) up to isomorphism.
The locus of sheaves with fixed numerical invariants is a component of P̄icX/S

and so the compactified Picard functor breaks up into a countable number of
components. Define the degree of a single rank 1, torsion-free sheaf I by the
formula:

deg(I) = χ(I)− χ(OXs̄
)

If I is a S-relatively rank 1, torsion-free sheaf on X, then the fiber-wise
degree of I defines a locally constant function of the base S. Set P̄icn

X/S equal
to be the subfunctor of P̄icX/S that parametrizes families of degree n rank 1,
torsion-free sheaves.

The functor P̄ic0
X/S is also known as the relative compactified Jacobian

and is denoted J̄X/S . To ease notation, we will often write P̄X/S or P̄ for P̄icX/S

and P̄n
X/S or P̄n for P̄icn

X/S .

Remark: There is perhaps one unexpected difference between the definition
of the relative Picard functor and the relative compactified Picard functor. We
defined the relative Picard functor so that a morphism from a S-scheme T to
PX/S corresponds to a line bundle on XT together with a local trivialization. By
contrast, the relative compactified Picard functor was NOT defined by requiring
that the morphisms from T to P̄X/S correspond to rank 1, torsion-free sheaves
on XT together with a local trivialization. Instead, these morphisms correspond
to T -flat sheaves on XT that are fiber-wise rank 1, torsion-free. This is not the
same as requiring that I is globally rank 1, torsion-free. The definition that we
have chosen is the definition that most accurately captures the intuition of a
“family of rank 1, torsion-free sheaves”.

In analogy with this definition of “family of rank 1, torsion-free sheaves”, one
might be tempted to redefine the relative Picard scheme PX/S so that morphisms
from T to PX/S corresponds to T -flat sheaves on XT that are fiber-wise locally
free of rank 1. One can show that such sheaves are precisely the line bundles on
XT , so this alternative definition leads to an isomorphic functor. The poof of
this fact is an application of standard theorems on cohomology and base change.

2.3 The Existence Theorem

The basic existence theorem is:
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Theorem 2. Suppose that f : X → S is locally projective, finitely presented,
and flat with 1-dimensional integral geometric fibers. Then the functor P̄icX/S

is representable by a S-scheme. Furthermore, P̄icn
X/S is finitely presented and

locally projective over S.

Proof. This is a combination of theorems 8.1 and 8.5 from [2]. Under more
restrictive hypotheses, this theorem is proven in [5].

The proof in [2] follows along the same lines as the proof that the Picard
scheme of a family of integral curves exists that was sketched earlier. One major
difficulty in generalizing the construction of the relative Picard scheme lies in
developing a theory of the Abel map in sufficient generality. We refer the reader
to the literature for details.

Remark:

• Observe that it follows from this theorem that P̄X/S → S is proper and
so P̄X/S is a genuine compactification of PX/S ! The tensor product of
a line bundle and a rank 1, torsion-free sheaf is again a rank 1, torsion-
free sheaf so the scheme P̄X/S admits a natural action by PX/S . In the
next section, we will discuss the Abel map from the Hilbert scheme to the
relative compactified Picard scheme. These three properties are the three
fundamental properties of the relative compactified Picard scheme that
were stated in the introduction.

• If one assumes stronger projectivity conditions for f : X → S, then one
can conclude stronger projectivity conditions for P̄n

X/S → S. We refer the
interested reader to theorem 8.5 in [2] for the details.

• Notice that the theorem does not say that P̄X/S → S is smooth of relative
dimension g. In fact, the morphism P̄X/S → S is never smooth except in
trivial cases. Furthermore, there are example where the geometric fibers
of P̄X/S → S have dimension greater than g although this is a some-
what pathological phenomenon. We shall see illustrations of both of these
properties in the examples at the end of these notes.

• When S is the spectrum of an algebraically closed field, Eduardo Esteves
has given a third proof of this theorem. In [6], he constructs the compact-
ified Jacobian by using what he calls “theta sections” of a vector bundle.
His approach is particularly useful in studying the projective geometry of
the compactified Jacobian.

2.4 The Abel Map

The Abel map is a fundamental tool in the study of the compactified Jacobian.
The theory of the Abel map is somewhat less technical for Gorenstein curves.
For the purposes of exposition, we will focus on the Gorenstein case and direct
the reader interested in the non-Gorenstein case to [2].
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For this subsection, we will now assume that f : X → S satisfies all of the
conditions listed at the beginning of section 2.1 and has the additional property
that the geometric fibers Xs̄ → s̄ are Gorenstein. The degree d component of
the Abel map Ad : Hilbd

X/S → P̄ic−d
X/S is defined in terms of a map on the

associated functors of points. Morally, the Abel map is defined to be the map
that takes a degree d closed subscheme Z to the ideal sheaf of Z, considered as
a coherent sheaf. This definition does not quite work because the ideal sheaf
IZ may not be trivial when restricted to the section σ. Instead, we define Ad

as follows. Suppose that T is an arbitrary S-scheme. Then a T -valued point
of Hilbd

X/S is a T -flat closed subscheme of XT with fiber-wise degree d. The
image of this point under the Abel map is defined to be the T -valued
point of P̄−d corresponding to the following sheaf:

(IZ ⊗ f∗(σ∗(IZ)∨), ican)

Here ican is the canonical trivialization of the restriction of IZ ⊗ f∗(σ∗(IZ)∨)
to σ (coming from the identity f ◦ σ = id).

Observe that this notation is inconsistent with the notation traditionally
used for the Abel map. The Abel map of a smooth curve is usually defined
so that it sends a degree d divisor to a degree d line bundle. We have chosen
our notation to agree with the conventions used in [2]. One advantage of this
convention is that it avoids dualizing the ideal sheaf. In the non-Gorenstein
case, the ideal sheaf of a closed subscheme of a curve may fail to be reflexive so
the operation of dualization is somewhat ill-behaved.

Before stating the main result on the Abel map, it is convenient to intro-
duce some terminology. For the purposes of defining terminology, we need to
momentarily assume that S is the spectrum of an algebraically closed field so
that we are dealing with a single integral Gorenstein curve. We will again write
s̄ for S and Xs̄ for X when we are working with a single curve. If I is a rank 1,
torsion-free sheaf on the curve Xs̄, then the index of specialty of I is defined
to be the dimension of the space

Ext1(I,OXs̄
)

If I is actually a line bundle, then this cohomology group is isomorphic to
H1(Xs̄, I

∨). Taking into account that our conventions are “dual” to the stan-
dard ones, this confirms that our definition of the index of speciality generalizes
the usual notion for line bundles. We say that I is special if the index of
specialty is non-zero and that I is non-special otherwise.

With these preliminaries out of the way, we can state the basic properties of
the Abel map:

Theorem 3. Let f : X → S be flat, finitely presented, and locally projective
with geometric fibers equal to integral Gorenstein curves of genus g. Fix an
integer d and consider the Abel map

Ad : Hilbd
X/S → P̄−d

X/S

Then the following properties hold:
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1. The map Ad is surjective if and only if d ≥ g.

2. The locus of non-special points of P̄icd
X/S is open and the map Ad is smooth

of relative dimension d− g over this open subscheme.

3. The map Ad is smooth of relative dimension d−g if and only if d ≥ 2g−1.

Proof. This is a combination of theorem 8.4 on page 103 of [2] and theorem 8.6
on page 106 of the same paper. The idea is to relate the fibers of the Abel map
over a point I to a projective space related to the cohomology of I.

Remark:

• Regardless of whether or not the geometric fibrs of f are Gorenstein, there
is always a natural map Ad : Hilbd

X/S → P̄−d. However, if the family
f : X → S contains non-Gorenstein curves, then one can show that this
map is not a smooth fibration.

• It is possible to adapt this theorem to work for families containing non-
Gorenstein curves by taking the source of the Abel map to be the Quot
scheme Quotd

ω/X/S , rather than the Hilbert scheme. Here ω is the relative
dualizing sheaf.

3 Examples

In this section, we explicitly describe the geometry of some compactified Ja-
cobians and then say some words about what is known in general. For the
remainder of this note, we will focus primarily on a single curve so that S is the
spectrum of an algebraically closed field k. As before, we will write s̄ for S and
Xs̄ for X when the base S is the spectrum of an algebraically closed field.

3.1 Smooth Curves

On a smooth curve every rank 1, torsion-free sheaf is a line bundle. In particular
if Xs̄/s̄ is a smooth curve, then we have that PXs̄/s̄ = P̄Xs̄/s̄. This is what one
expects since the Jacobian of a smooth curve is compact and so there is no need
to compactify.

3.2 Genus 1 Curves

Now suppose that Xs̄/s̄ is a singular integral curve of genus 1, so that the
curve is either a nodal plane cubic or a cuspidal plane cubic. In this case,
the degree −1 component P̄−1

Xs̄/s̄ of the relative compactified Picard scheme is
canonically isomorphic to Xs̄ and hence the compactified Jacobian JXs̄/s̄ is
(non-canonically) isomorphic to Xs̄. This fact remains true even if the base is
allowed to be arbitrary. In particular, if f : X → S is the family of plane cubics
from the introduction then relative compactified Jacobian J̄X/S is isomorphic
to X.
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The proof goes as follows. A family of integral curves always embeds into
its relative compactified Jacobian provided the genus g is greater than zero:

Lemma 1. Suppose that f : X → S is locally projective, finitely presented, and
flat with 1-dimensional integral geometric fibers of genus g > 0. Then the Abel
map p 7→ (Ip ⊗ f∗(σ∗(Ip)∨), ican) is a closed embedding X → P̄−1

X/S.

Proof. This is theorem 8.8 on page 108 of [2]. The morphism X → P̄−1
X/S is

proper and finitely presented, so it enough to prove that any scheme-theoretic
fiber of a geometric point of P̄−1

X/S is either empty or a single reduced point.
This face is proven using the interpretation of the fibers of the Abel map in
terms of the projectivization of certain cohomology groups.

Now in the case that the genus is 1, one can additionally conclude from
theorem 3 that the map X → P̄−1

X/S is also smooth of relative dimension 0. It
follows that the map is an isomorphism.

3.3 Genus 2 Curves with a Node

Suppose that Xs̄/s̄ is a genus 2 curve with a single node. Let X ′s̄/s̄ be the
normalization and g : X ′s̄ → Xs̄ the normalization map. Say that q is the nodal
point of Xs̄ and that p1 and p2 are the two points of X ′s̄ that lie above q. The
structure of the (non-compactified) Jacobian of Xs̄ is easy to describe. The
Jacobian JX′

s̄/s̄ is an elliptic curve. There is a natural map h : JXs̄/s̄ → JX′
s̄/s̄.

In terms of moduli of line bundles, this map is defined by pullback via g. This
map realizes JXs̄/s̄ as a Gm-bundle over JX′

s̄/s̄:

0→ Gm → JXs̄/s̄ → JX′
s̄/s̄ → 0

The compactified Jacobian J̄Xs̄/s̄ can be explicitly constructed in terms of
a certain completion of JXs̄/s̄ to a P1-bundle over JX′

s̄/s̄. We will just briefly
sketch the construction and omit all proofs. The details are carefully worked
out in [3]. See [7] for later developments.

As a Gm-bundle over JX′
s̄/s̄, the scheme JXs̄/s̄ can be completed to a P1-

bundle over JX′
s̄/s̄ by adding in two sections: a section σ1 “at infinity” and a

section σ2 “at zero.” After unwinding the definition of the Gm-bundle structure,
one can check that the correct completion to take is the projectivization of the
sheaf (1× h)∗(℘)|q×JX′

s̄/s̄
on JX′

s̄
. Here ℘ is the Poincare bundle on X × JXs̄/s̄.

We will let Presg denote this projective bundle. This notation is chosen to agree
with the notation used in [3]. In that paper, the projective bundles that are
constructed in this manner are called presentation schemes.

There is a natural map Presg → J̄Xs̄/s̄ that realizes J̄Xs̄/s̄ as a quotient
of Presg. This map identifies the section σ1 with the section σ2 and is an
isomorphism away from these sections. However, the two sections do not get
identified fiber-wise! The line bundle OX′

s̄
(q1 − q2) represents an element t

of JX′
s̄/s̄(s̄). The two sections σ1 and σ2 are identified in such a way that if

g ∈ JX′
s̄/s̄(s̄) then the point σ1(g) is identified with the point σ2(g + t). Here
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addition is the group law on JX′/k. As an aside, it follows that the natural map
JXs̄/s̄ → JX′

s̄/s̄ does NOT extend to a map J̄Xs̄/s̄ → JX′
s̄/s̄ of the compactified

Jacobians.
The boundary ∂(J̄Xs̄/s̄) of the compactified Jacobian is equal to the image of

the two sections σ1 and σ2 under the natural map, so the boundary is irreducible
and 1-dimensional. The compactified Jacobian is singular along the boundary.
At a point on the boundary, the compactified Jacobian locally looks like two
smooth surfaces meeting transversely.

Given that there is a 1-dimensional irreducible scheme parametrizing rank
1, torsion-free sheaves on Xs̄ that are not locally free, it is natural to ask how
these sheaves can be described “explicitly”. If L is a degree −1 line bundle
on X ′s̄, then g∗(L ) is a torsion-free rank 1 sheaf on Xs̄ that fails to be locally
free at the node. By a dimension count, it follows that every such sheaf must
be of this form. One can further develop this line of thinking to construct an
isomorphism ∂(JXs̄/s̄) ∼= P−1

X′
s̄/s̄

(∼= X ′s̄).
We can even describe the action of JXs̄/s̄ on the boundary. The subgroup

Gm acts trivially on the boundary and the action of JXs̄/s̄ on the boundary
factors through the quotient JX′

s̄/s̄. Under the identification ∂(JXs̄/s̄) ∼= P̄−1
X′

s̄/s̄
,

the action of JX′
s̄/s̄ on ∂(JXs̄/s̄) is identified with the natural action on P̄−1

X′
s̄/s̄

3.4 Genus 2 Curves with a Cusp

Let Xs̄/s̄ be a genus 2 curve with a cusp. There is a description of the compact-
ified Jacobian of this curve that is analogous to the description of the compact-
ified Jacobian of a genus 2 curve with a node. The (non-compactified) Jacobian
of Xs̄ is an extension of an elliptic curve by the additive group Ga. To be more
precise, let X ′s̄/s̄ denote normalization and g : X ′s̄ → Xs̄ the normalization map.
There is a natural surjection JXs̄/s̄ → JX′

s̄/s̄ with kernel equal to Ga.
To explicitly construct the compactified Jacobian, we first complete JXs̄/s̄ to

a P1-bundle over JX′
s̄/s̄ that we denote by Presg. In the case of a nodal genus 2

curve, the projective bundle was constructed by adding in a “section at infinity”
and a “section at zero.” In the cuspidal case, the projective bundle is obtained
by adding in a length 2 non-reduced subscheme “at infinity” that is supported
along a section. More rigorously, this projective bundle can be constructed
in terms of the Poincare sheaf as in the nodal case. There is a natural map
Presg → J̄Xs̄/s̄ that is an isomorphism “away from infinity” and collapses the
length 2 non-reduced subscheme at infinity to its underlying reduced subscheme.

The description of the boundary J̄Xs̄/s̄ follows along the same lines as the
case of a genus 2 curve with a node. The boundary is isomorphic to P̄−1

X′
s̄/s̄

∼= X ′s̄

and, in particular, is 1-dimensional and irreducible. The action of the additive
subgroup of JXs̄/s̄ on the boundary is trivial, so the action factors through the
quotient JX′

s̄/s̄. This action can be identified with the natural action of J̄X′
s̄/s̄

on

P̄−1
X′

s̄/s̄
.
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3.5 The General Picture

The examples that we have discussed so far in these notes are somewhat mis-
leading. If Xs̄ is a singular integral curve, then it is always possible to give
an explicit description of the Jacobian of Xs̄ in terms of the Jacobian of the
normalization of Xs̄ and the structure of the singularities. Such a description
can be found in many textbooks such as section 9.2 of [4] or chapter 3 of [13].
It is NOT always possible to given such a description of the compactified Jaco-
bian. When Xs̄ has only double points (e.g. nodes, cusps, tacnodes, ect), the
theory of presentation schemes provides a description of the geometry of the
compactified Jacobian that generalizes our discussion of the case when Xs̄ is of
genus 2 and has only a node or a cusp as a singularity.

By contrast, the geometry of the compactified Jacobian seems to be quite
wild when Xs̄ has a singularity with embedding dimension greater than 3:

Theorem 4. Let Xs̄/s̄ be a proper, integral curve over an algebraically closed
field. If Xs̄ does not lie on a smooth surface (i.e. Xs̄ has a singularity with
embedding dimension at least 3), then J̄Xs̄/s̄ is reducible.

Proof. This is proven in both [12] and [11]. The idea can concisely summarized.
Let’s focus on the case that Xs̄ is Gorenstein. First, one uses the Abel map
to reduce the theorem to show proving the reducibility of the Hilbert scheme
Hilbn

Xs̄/s̄ for some n > 0. Any collection of n distinct points on Xs̄ defines a
point of Hilbn

Xs̄/s̄ . The Zariski closure of these points is an n-dimensional irre-
ducible component of the Hilbert scheme. Now suppose that p0 is a singularity
of Xs̄ that has embedding dimension at least 3. One can produce an irreducible
component of Hilbn

Xs̄/s̄ of dimensional greater than n by studying closed sub-
schemes supported at p0. In the case of that Xs̄ is not Gorenstein, the role of
the Hilbert scheme must be replaced by an appropriate Quot scheme.

This is very pathological behavior for a compactification: the boundary is
larger than the interior! Thankfully there is a nice characterization of this
pathology:

Theorem 5. Suppose that Xs̄/s̄ is a proper, integral curve over an algebraically
closed field that lies on a smooth surface (i.e. the embedding dimension is at
most 2 at every point). Then the compactified Jacobian J̄Xs̄/s̄ is an integral
scheme of dimension g. It is both Cohen-Macaulay and a local complete inter-
section. Moreover, this scheme contains the Jacobian JXs̄/s̄ as a dense open
subscheme.

Proof. In his thesis [5], D’Souza proved this result under the assumption that
the singularities of Xs̄ are either nodes or cusp. Altman, Iarrobino, and Kleiman
proved the full theorem as stated in [1]. The irreducibility of P̄Xs̄/s̄ was also
proven by Rego in [12]. Rego proves irreducibility by a careful local study of
the compactified Jacobian at a given boundary point.

The proof by Altman, Iarrobino, and Kleiman is quite different. Their proof
is global in nature and uses the Abel map to reduce to the case of a Quot
scheme.
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There are, of course, many singular curves that lie on surfaces and have sin-
gularities that are not double points. Beyond the previous theorem, there seem
to be few results describing the global geometry of the compactified Jacobians
associated to such curves. One such result is an enumeration of the number of
boundary components due to Rego:

Theorem 6. Suppose that Xs̄/s̄ is a proper, integral curve over an algebraically
closed field that lies on a smooth surface (i.e. the embedding dimension is at
most 2 at every point). Let g : X ′s̄ → Xs̄ be the normalization. If p ∈ Xs(ks),
then let δ(p) equal the dim(g∗(OX′

s
)/OXs

)−1. Here f : X ′s → Xs is the normal-
ization map. The number of irreducible components of the boundary ∂(J̄Xs̄/s̄)
is equal to the sum

∑
δ(p).

Proof. This is Rego’s theorem A [12].
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